Hybrid porphyrin-silicon nanowire field-effect transistor by opto-electrical excitation.
نویسندگان
چکیده
A porphyrin-silicon nanowire (Si-NW) hybrid field-effect transistor is introduced. The hybrid device has separate electrical and optical gates surrounding the Si-NW channel. Porphyrin, a component of chlorophyll, is employed as an optical gate to modulate the potential of the Si-NW channel. Due to the independently formed hybrid gates, both optical and electrical excitation can effectively modulate the device. The exposed porphyrin optical gate responds to the optical excitation, and independently formed electrical gates respond to the electrical excitation. Charge transfer characteristics between a semiconductor channel and the porphyrin optical gate are deeply investigated. Optical, electrical, and opto-electrical excitation methods are employed to analyze the charging and discharging behaviors. Of these methods, opto-electrical excitation enables the strongest charge transfer because the inversion electron formation by an electrical pulse and the photoinduced charge transfer by an optical stimulus are affected simultaneously. Discharging processes, such as rapid discharging, exponential detrapping, and the formation of metastable states are also analyzed.
منابع مشابه
Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor
In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...
متن کاملFeasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording
In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on ...
متن کاملSynthesis, characterization and opto-electrical properties of ternary Zn2SnO4 nanowires.
Ternary oxides have the potential to display better electrical and optical properties than the commonly fabricated binary oxides. In our experiments, Zn(2)SnO(4) (ZTO) nanowires were synthesized via thermal evaporation and vapor phase transport. The opto-electrical performance of the nanowires was investigated. An individual ZTO nanowire field-effect transistor was successfully fabricated for t...
متن کاملZnS/Silica Nanocable Field Effect Transistors as Biological and Chemical Nanosensors
Compound semiconductor/isolator (ZnS/silica) core/shell nanocables have been used to fabricate single nanowire-based field effect transistors. Using the surface-adsorbed charged molecules as the gate, the nanocablebased devices show potential for label-free, real-time, and sensitive detection of biological species. After chemical modification, amineand oxide-functionalized nanocables exhibit li...
متن کاملEffect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2012